LL30HE-CC-300

30 W Constant Current | FD driver

- Very high efficiency up to 91 %
- Very low current ripple, complying with IEEE 1789 recommendation
- Suitable for use in emergency lighting applications
- Long lifetime up to 100 000 h
- Maximum output voltage limited to 250 V
- Driver protection Class I
- Ideal solution for Class I luminaires, suitable for Class II luminaires too*

Product code: 5797

30 W 220 - 240 V 50 - 60 Hz

* See page 4 for details.

Functional Description

- Fixed constant current output 300 mA
- Open & short circuit protection

Mains Characteristics

Nominal rated voltage range 220 V - 240 V, 50 - 60 Hz
Rated emergency voltage range 220 V - 240 V, DC
AC voltage range 198 VAC - 264 VAC

Withstands max. 320 VAC (max. 1 hour) Withstands min. 176 VAC (max. 1 hour)

DC voltage range 176 VDC – 280 VDC

DC starting voltage $> 190 \, \text{VDC}$ Mains current at full load $0.12 - 0.16 \, \text{A}$ Frequency $50 \, \text{Hz} - 60 \, \text{Hz}$ THD at full power $< 10 \, \%$ Leakage current to earth $< 0.3 \, \text{mA}$

Tested surge protection 1 kV L-N, 2 kV L-GND (IEC 61000-4-5)

Tested fast transient protection 2 kV (IEC 61000-4-4)

Insulation between circuits & driver case

Mains circuit - Output Non-isolated

Mains and output - Driver case Basic insulation

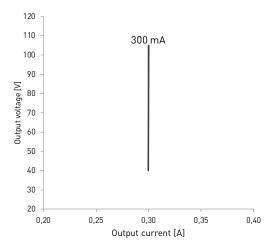
Load Output (non-isolated)

Output current (I_{out}) 300 mA Accuracy \pm 5 % Ripple < 1 %* at \le 120 Hz

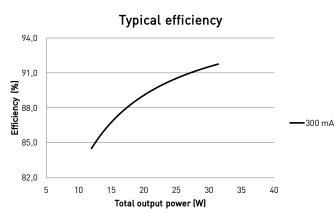
Ripple < 1 % at $\le 120 \text{ Hz}$ *) Low frequency, LED load: Cree MX3 LEDs

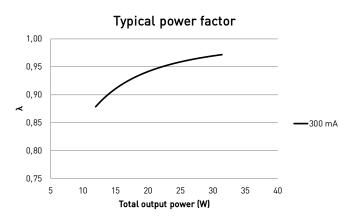
PstLM < 0.01*

SVM < 0.01* *) At full power


U_{nut} (max) (abnormal) 250 V

EOF, (EL use) > 0.98 x output current with AC supply


I _{LED}	300 mA
P _{Rated}	31.5 W
U_{LED}	40 – 105 V
PF (λ) at full load	0.98
Efficiency (n) at full load	91 %

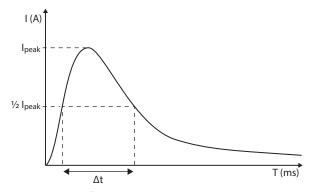


Operating window

Driver performance

Operating Conditions and Characteristics

Highest allowed t_c point temperature t_c life (70 000 h) temperature Ambient temperature range*
Storage temperature range
Maximum relative humidity
Mains switching cycles
Lifetime (90 % survival rate)


70 °C
70 °C
-25 °C ... +50 °C
-40 °C ... +80 °C
No condensation
> 100 000 cycles
100 000 h, at $t_c = 60$ °C
100 000 h, at $t_c = 65$ °C
70 000 h at $t_c = 70$ °C

Quantity of drivers per miniature circuit breaker 16 A Type C

Based on I _{cont}	Based on inrush current I _{peak}	Typ. peak inrush current I _{peak}	1/2 value time, Δt	Calculated energy, I _{peak} ² ∆t
70 pcs.	82 pcs.	22 A	140 µs	0.047 A ² s

CONVERSION TABLE FOR OTHER TYPES OF MINIATURE CIRCUIT BREAKER

MCB type	Relative quantity of LED drivers
B 10 A	37 %
B 16 A	60 %
B 20 A	75 %
C 10 A	62 %
C 16 A	100 % (see table above)
C 20 A	125 %

Type C MCB's are strongly recommended to use with LED lighting. Please see more details in "MCB information" document in each driver product page in "downloads & links" section.

^{*)} For other than independent use, higher t_a of the control gear possible as long as highest allowed t_c point temperature is not exceeded

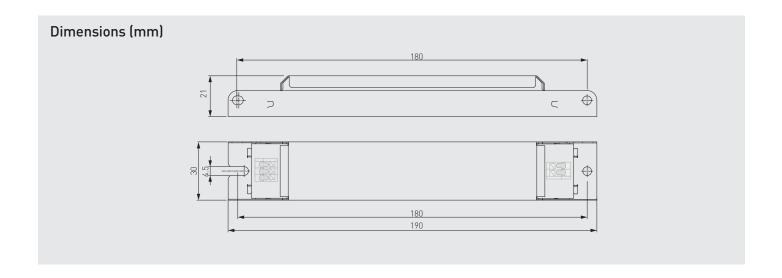
Connections and Mechanical Data

Wire size

Wire type

Wire insulation

Maximum driver to LED wire length


Weight IP rating

According to EN 60598 1.5 m 119 g IP20

 $0.5 \text{ mm}^2 - 1.5 \text{ mm}^2$

Solid core and fine-stranded

Connections Helvar LED Driver LL30HE-CC-300 ∘ L ∘ N ∘⊕ Note: • Not suitable for load side switching operation

LL30HE-CC-300 LED driver is suited for built-in usage in luminaires. With LL1x2130-SR strain reliefs, independent use is possible too (see the LL1x2130-SR datasheet for details). In order to have safe and reliable LED driver operation, the LED luminaires will need to comply with the relevant standards and regulations (e.g. IEC/EN 60598-1). The LED luminaire shall be designed to adequately protect the LED driver from dust, moisture and pollution. The luminaire manufacturer is responsible for the correct choice and installation of the LED drivers according to the application and product datasheets. Operating conditions of the LED drivers may never exceed the specifications as per the product datasheet.

Installation & operation

Maximum ambient and t, temperature:

- For built-in components inside luminaires, the tambient temperature range is a guideline given for the optimum operating environment. However, integrator must always ensure proper thermal management (i.e. mounting base of the driver, air flow etc.) so that the to point temperature does not exceed the t_c maximum limit in any circumstance.
- Reliable operation and lifetime is only guaranteed if the maximum t_c point temperature is not exceeded under the conditions of use.

Current setting

LL30HE-CC-300 LED driver features a 300 mA constant current output.

LED driver earthing

- LL30HE-CC-300 LED driver is a protective Class I device and designed for Class I luminaires.
- If used inside Class I luminaires, this LED driver must always have the protective earth cable connected for safety reasons.
- The driver is designed to be used inside Class I luminaires. For usage inside Class II luminaires, the safety of the luminaire shall be ensured through double/reinforced insulation of live parts and through supplementary insulation of conductive parts of the casing, or any conductive parts connected to the casing, as the casing is only basic insulated from the live parts. The earth connector of the driver shall be left unconnected and there shall be no protective earth terminals in the luminaire terminal block to fulfill the requirements of IEC/EN 60598-1 for Class II luminaires. The EMC performance of the driver change when left unearthed, so it is always the responsibility of the integrator to take measures and necessary actions, for example by luminaire design to ensure the assembled luminaire complies with latest EMC standard.

Miniature Circuit Breakers (MCB)

- Type-C MCB's with trip characteristics in according to EN 60898
- Please see more details in "MCB information" document in each driver product page in "downloads & links" section.

Lamp failure functionality

When open load is detected, driver limits output voltage according to Uout (max) (abnormal).

Driver can withstand overload, however reliable operation is only guaranteed in specified voltage range.

Driver can withstand underload, however reliable operation of the driver is only guaranteed in specified voltage range.

Short circuit

Driver can withstand output short circuit and after resolving the fault, driver recovers normal operation automatically.

Conformity & standards

	I
General and safety requirements	EN 61347-1
Particular safety requirements for DC or AC supplied electronic control gear for LED modules	EN 61347-2-13
Additional safety requirements for AC	EN 61347-2-13,
or DC supplied electronic controlgear	Annex J
for emergency lighting	
Thermal protection class	EN 61347, C5e
Mains current harmonics	EN 61000-3-2
Limits for voltage fluctuations and flicker	EN 61000-3-3
Radio frequency interference	EN 55015
Immunity standard	EN 61547
Performance requirements	EN 62384
Recommended Practices for Modulating Current in High-Brightness LEDs for Mitigating Health Risks to Viewers	IEEE 1789-2015
Compliant with relevant EU directives	
RoHS/REACH compliant	
ENEC and CE / UKCA marked	

Label symbols

Thermally controlled control gear, incorporating means of protection against overheating to prevent the case temperature under any conditions of use from exceeding 130 °C.

AC/DC supplied electronic control gear for emergency lighting purposes intended for connection to a centralized emergency power supply.